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1. Introduction 
 
Finite element modelling and optimization of different 
engineering structures are indispensable in the 
engineering design process nowadays since time and cost 
can be saved. The available professional finite element 
systems can handle practically all physical phenomena. 
The accuracy of the finite element computations depends 
on the finite element model describing the problem. The 
elaboration of these finite element models is an important 
engineering task. Depending on the complexity of the 
problem (e.g. large deformation, nonlinearity, high 
computational demand, etc.), this task can cause serious 
challenges to simulation engineers. 
In 2013, after the successful defence of my PhD thesis 
entitled 'Shape optimization of rubber parts', my research 
activities have been continued in three directions. One 
direction is the investigation of closed-cell aluminium 
foams, the second is the investigation of titanium lattice 
structures, and the third is the continuation of the doctoral 
topic dealing with rubber parts. Although the three topics 
are apparently sharply different from each other, they have 
many things in common, these are: 
 typical loading is compression; 
 complex problems with sophisticated finite element 

models (high computational demand, so simplified 
models are needed for the aluminium foam and 
titanium structures; handling large deformation and 
material nonlinearity for rubbers); 

 the optimization task arises to ensure the required 
mechanical properties. 

My research was supported by several projects, and due to 
the nature of the tasks, it was feasible and efficient to work 
in teams. 
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On the topic of shape optimization of rubber parts, my PhD 
student obtained his PhD degree in informatics entitled 
'Development of finite element simulation-based 
optimization of rubber bumper'. Furthermore, another 
student of mine is completing his PhD studies on the topic 
of 'Design of patient-specific hip implant using titanium 
lattice structure' at the Doctoral School of Informatics of 
the University of Debrecen. 
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2. Geometrical modelling and finite element analysis of 
closed-cell aluminium foams 
 
2.1. Brief overview of the research 
 
Aluminium foams have good density specific mechanical 
properties due to their lightweight cellular structure. It is 
well known that metal foams have high specific 
compression strength combined with excellent energy 
absorption characteristics [1]. Therefore, the interest in 
these materials is widespread not only as a vibration 
damper or sound absorber but also as a load-bearing 
structural element. Numerous applications rely on the 
compressive properties of metal foams, which directly 
depend on their structure. As a load-bearing structural 
element, e.g. vehicle part, metal foam is expected to behave 
elastically under operational circumstances, so the 
material response must be predicted precisely in the 
elastic region. Numerical determination of compressive 
properties of foam structure remains a demanding 
engineering task, and it is indispensable for design 
purposes [2]. 
The current limitations of its widespread application are 
the high production cost and the difficult reproducibility 
due to the production challenges. Moreover, the design 
difficulties and the still unsolved efficient and reliable 
finite element technique are also obstacles to the 
application. Over the recent years, the focus of my research 
was to find appropriate solutions for the above-mentioned 
problems. 
Based on the needs metal foams can be produced from 
different raw materials (aluminium, magnesium, titanium, 
etc.) and can be grouped according to the structure (open-
cell, closed-cell, metal matrix syntactic, etc.). 
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A number of studies have reported on measuring the 
material response of different types of metal foams in 
destructive ways. The compressive properties of open-cell 
metal foams in [3,4], metal matrix syntactic foams in [5,6], 
and titanium foam in [7] were investigated, while the 
elastic behaviour of closed-cell aluminium foam under 
uniaxial loading and bending conditions was also studied 
in [8]. 
The geometrical modelling is an essential part of the 
procedure aiming at the investigation of metal foam 
structures in a numerical way. Numerous approaches can 
be found in the literature for the proper geometrical 
description of foam structures. 
One of which is the usage of uniform cell models which 
results in simplified geometry compared with the actual 
structure. A combination of spherical and cruciform-
shaped cells was used to model closed-cell aluminium 
foam and to simulate its material response in [9], while 
different uniform cell structures were applied to the model 
and simulate open cell metal foams in [10]. Diamond and 
cubic cell foam structures were also used to simulate the 
effect of cell shape on the mechanical behaviour of open 
cell metal foams in [11]. A numerical study using the 
Weaire-Phelan unit cell was introduced in [12]. 
Recent studies proved that micro computed tomography 
(µCT) can be an efficient and powerful tool for mapping the 
complete structure of materials in a non-invasive and non-
destructive way. Three-dimensional models were 
generated based on µCT images and numerical calculations 
were performed on cellular structures in [13]. Closed-cell 
aluminium foams in [14] and open-cell aluminium foams in 
[15] were investigated numerically based on µCT images 
and the material response for compression was 
determined. 
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The number of publications in the field of geometrical 
modelling and finite element analysis of metal foam 
structures demonstrates that this topic is in the focus of 
studies. To obtain high-quality predictions of a porous 
material response, it is critical to construct finite element 
models that provide an adequate description of the actual 
geometry [2]. 
During my research two types of closed-cell aluminium 
foam structures were investigated. One is produced with 
direct foaming technique called ALUFOAM by the 
Department of Mechanical Engineering, Faculty of 
Engineering, University of Debrecen. The other type is 
called ALUHAB is made by bubble injection process and 
procured from the Aluinvent Zrt. For modelling these 
structures the µCT based (for ALUFOAM) and unit cell 
based (for ALUHAB) techniques are also introduced. 
In the case of ALUFOAM, a geometrical reconstruction and 
finite element analysis of the structure in the elastic region 
are presented based on µCT images. The degree of 
deviation between the simulation and measurement 
results is acceptable according to the engineering practice, 
proving that the method is suitable for the description of 
the real structures. An essential part of the procedure is a 
manual reconstruction method for objects of complex 
geometry. The first step is the preparation of plane 
sections (CT images) with parallel planes of a given 
density. The second is the performance of a series of 
transformations providing a geometrically accurate three-
dimensional object that is suitable for finite element 
analysis. The investigation of specimens proves that the 
accuracy of the proposed reconstruction method meets the 
requirements, and the procedure can be reproduced and 
validated [2]. 
In the case of ALUHAB the Weaire-Phelan unit cell was 
used to model the actual foam specimen. The accuracy of 
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the created CAD model was validated by comparing its 
physical properties to the original specimen. The validated 
model was then used for the finite element simulations 
focusing on the elastic behaviour. By comparing the finite 
element simulation results to the laboratory measurement, 
the accuracy and usability of the simplified model were 
presented [16]. 
 
2.2. Introduction of the investigated structures 
 
The ALUFOAM was produced from Duralcan F3S.20S Metal 
Matrix Composite and fabricated using a direct foaming 
technique by adding TiH powder as a blowing agent [2]. 
The method of the production is described in our works 
[17,18]. 
The chemical composition determined by EDX analysis and 
the related physical and mechanical properties of the 
applied matrix material can be seen in Table 1. 
 

Table 1. Chemical composition and related physical and 
mechanical properties of the matrix material [2] 

Element Measured data 
Al (wt%) 69.26 
Si (wt%) 9.21 
Mg (wt%) 0.53 
SiC (wt%) 20.8 
other (wt%) 0.2 

Properties  
SiC median particle size (mm) 13.24 
Density (kg/m3) 2875.12 
Young's modulus (GPa) 97.2 
 
The size of the specimens was determined according to the 
ISO 13314 standard [19] based on a statistical analysis of 
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the pore sizes. The size of the specimens was 14.5 mm × 
14.5 mm × 14.5 mm (see Figure 1) and STRUERS Labotom-
15 was used for cutting [2]. The main properties of the 
specimens are listed in Table 2. 
 

 
Figure 1. Aluminium foam specimens produced by direct 

foaming (ALUFOAM) [2] 
 

Table 2. Structural properties (average) of the ALUFOAM 
specimens 

Properties Measured data Standard deviation 
Mass (g) 1.34 0.015 
Porosity (%) 85.31 0.133 
 
The ALUHAB was procured from the Aluinvent Zrt. The 
chemical composition of the raw material is unfortunately 
confidential. For the compression test five cylindrical 
specimens were cut according to the ISO 13314 standard 
[19]. The diameter and the length were 30 mm, 
respectively. Table 3 shows the average physical 
properties of the material. The porosity was calculated 
based on the weight of the specimens. An image of the 
specimen is shown in Figure 2. The average cell size and 
wall thickness were determined using CT analysis [16]. 
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Figure 2. ALUHAB specimen [16] 

 
Table 3. Structural properties (average) of the ALUHAB 

specimens [16] 

Properties Measured data Standard deviation 

Mass (g) 6.6 0.166 

Porosity (%) 89.27 0.26 

 
2.3. Compression tests 
 
Both types of specimens were subjected to a series of 
compression tests. The compression tests for the 
aluminium foams produced by direct foaming were 
performed on an INSTRON 8874 type universal testing 
machine at room temperature. The compression tests were 
carried out with the application of lubricant. The 
deformation rate was maintained in quasi-static condition 
at 8.7 mm/min. During the tests, the engineering stress-
engineering strain curves were registered and processed 
according to the ruling standard for the compression test 
for porous and cellular materials [19]. The compressive 
stress-strain curve of the investigated specimens can be 
seen in Figure 3 [2]. 
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Figure 3. Compressive stress-strain curves of the 

ALUFOAM specimens [2] 
 
The compression test in the case of ALUHAB was done 
using the INSTRON 68TM-10 universal material testing 
system and the strains were measured using the INSTRON 
AVE2 advanced video extensometer. The specimens were 
compressed until 0.2% strain which in the case of the 
whole specimen is 0.06 mm. The load was applied with a 1 
mm/min velocity. The results of the 5 compression tests 
were then summarised and the median value was selected 
for the comparison with the results of the finite element 
analysis. The maximum load on this specimen was 162.6 N, 
the results of the 4 other specimens showed a 3.56% 
maximum deviation from the median value [16]. 
 
2.4. Geometrical modelling of the foam structures 
 
In the case of ALUFOAM, a geometrical reconstruction 
process was established. The basis of the geometrical 
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reconstruction was the CT analysis that was performed 
using a YXILON CT Modular type industrial CT equipment 
with an X-ray tube of 225 kV and resolution of 7 m. Using 
Materialise Mimics v10.1 and its complement Materialise 
Magics v9.9, the reconstruction of the samples' geometry 
was established through some manual steps. The 
automatic reconstruction was then compared to the 
manual reconstruction process, and the results of the 
proposed process were qualified. An evaluation copy of 
VGStudio Max 3.0 was used to control the quality of the 
geometric reconstruction. The original structure was then 
compared to the reconstructed one [2]. 
Materialise Mimics v10.1 is used for the reconstruction 
process. This software allows automatic reconstruction, 
which results in a model that is suitable for finite element 
analysis, but the accuracy of the geometrical conformity is 
not high enough. Instead of an automatic reconstruction 
process, the software allows custom parameter settings 
defined by the user in each step of the transformation. The 
order of transformations can be chosen resulting in 
different model properties. The transformations provide 
STL files with different properties, e.g. mass, volume and 
number of elements. Figure 4. shows the order of 
transformations that was proved to be the best for 
approximation in the modelling of closed-cell aluminium 
foams (the figure contains the original command names 
used in Mimics) [2]. 
The accuracy of geometry was checked by comparing the 
foam model provided by the reconstruction process with 
the model described by the STL file using the evaluation 
copy of VGStudio Max 3.0. The comparison resulted in a 
statistical evaluation of deviations [2]. 
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Figure 4. Comparison of the automatic and the 

parameterized processes (total volume, number of 
elements) [2] 

 
The benefit of the proposed procedure is the high precision 
preparation of the foam structure attained by the custom 
parameterized reconstruction method [2]. Figure 5. shows 
the complete modelling procedure including the results of 
the finite element simulations. 
 

 
Figure 5. The modelling procedure [2] 
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For the cell structure approximation of the ALUHAB 
structure, the Weaire-Phelan unit cell was chosen. The 3D 
model was created using the SIEMENS Solid Edge software. 
After several steps, the unit cell was modelled. The unit 
cells were then multiplied to create a cube with a 30 mm 
edge length which was then cut to the cylinder shape of the 
specimen with a 30 mm diameter. The final CAD model of 
the aluminium foam specimen can be seen in Figure 6 [16]. 
 

 
 

Figure 6. The modelled Weaire-Phelan unit cell and the 
structure [16] 

 
To determine the accuracy of the CAD model its properties 
were compared to the properties of the original ALUHAB 
specimen. Table 4 shows the comparison of the physical 
properties [16]. 
 

Table 4. Comparison of the ALUHAB and the CAD model 
based on the physical properties [16] 

Properties ALUHAB CAD model Difference (%) 

Mass (g) 6.6 6.901 4.560 

Porosity (%) 89.27 86.43 3.181 

Volume (mm3) 2389 2421 1.339 
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It can be seen from Table 4, that the difference is less than 
5% so the model accurately approximates the physical 
properties of the original specimen. 
 
2.5. Finite element analysis of the foam structures 
 
Both computational models were analysed using the 
commercial finite element software SIEMENS Femap with 
NX Nastran solver for quasi-static loading. The 
computational models were prepared to represent the 
experimental setup, and each consisted of an aluminium 
foam specimen and two rigid plates. Frictionless contact 
was assumed and used in the model. The rigid top plate 
had a prescribed displacement, and the bottom plate was 
fixed and used to measure the reaction force. The 
aluminium foam specimens were meshed with tetrahedron 
elements, and material properties were determined using 
experiments. The model and the results of the ALUFOAM 
specimen can be seen in Figure 7 [2]. 
 

 
Figure 7. The meshed model (a), the boundary conditions 
(b), and the displacement state of a foam specimen (c) [2] 

 
The finite element calculations correlated with the 
experimental results, as shown in Figure 8. For design 
purposes, the specification of the elastic behaviour of metal 
foam structural parts is indispensable. The finite element 
model can describe this feature based on the accurate 
geometrical reconstruction [2]. 



14 

 

 
Figure 8. The real and the simulated force-displacement 
curves of the aluminium foam under quasi-static load [2] 

 
The established CAD model built from Weaire-Phelan unit 
cells was cut into a quarter model with one layer of unit 
cells, to prepare it for the finite element simulations, which 
can be seen in Figure 9. The Young's modulus was set to 
2374 MPa and the Poisson ratio to 0.29, respectively [16]. 
 

  
Figure 9. The quarter model and the meshed model 

 
During the evaluation of the finite element results, the 
force values were in focus. The simulation was conducted 
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by compressing the specimen. Since a one-layer quarter 
model was used, this force value was multiplied by 4 and 
the displacement was scaled up to reflect the 0.06 mm 
compression of the whole specimen [16]. The evaluated 
results can be seen in Table 5. 
 

Table 5. The results of the finite element simulation and 
the laboratory measurement [16] 

Property FEA Measurement Difference (%) 

Maximum force (N) 170.2 162.6 4.674 

 
From the measurement and the simulation, a force-
displacement curve was also evaluated [16], which can be 
seen in Figure 10. 
 

 
Figure 10. The force-displacement curves of the 

measurement and the simulation [16] 
 
It is visible from Table 5, that less than 5% relative error 
was determined so the Weaire-Phelan unit cells and the 
applied finite element technique can simulate the elastic 
behaviour of closed cell aluminium foam accurately [16]. 
 
2.6. Conclusions 
 
For the numerical determination of the elastic behaviour of 
ALUFOAM, a manual geometrical reconstruction procedure 
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was presented. This process was realized in several 
custom parameterized steps and resulted in a more 
accurate model than the generally used automatic 
reconstruction. The difference between the two 
procedures was proved with comparison analysis. The 
original image stack was transformed into a form that is 
suitable for finite element simulations. The finite element 
calculations correlated with the experimental results and 
the numerical model precisely described the elastic 
behaviour of the investigated foam based on the accurate 
geometrical reconstruction. The procedure can support the 
design process of load-bearing metal foam parts [2]. 
The structure of the ALUHAB was approximated by 
Weaire-Phelan unit cells, which were then multiplied and 
shaped to match the starting foam specimen. The created 
CAD model was then simplified into a one-layer quarter 
model, to prepare it for the finite element simulations. 
Before the simulations, the CAD model was validated by 
comparing its physical properties to the original specimen. 
The comparison has shown that the Weaire-Phelan unit 
cell structure can model the physical properties of the 
material with significant accuracy, as the difference values 
have been less than 5% in all cases. After the validation, 
the finite element simulations were performed on the 
simplified model. The boundary conditions and the load 
were given to recreate the laboratory conditions as closely 
as possible. The simulation results were compared to the 
measured data. The use of the Weaire-Phelan unit cell can 
shorten the design process of structures using metal foam 
materials, as the creation of the structure only requires the 
multiplication of one unit cell while being able to model 
the physical properties and the mechanical behaviour of 
these materials with sufficient accuracy [16]. 
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3. Finite element analysis of additively manufactured 
titanium lattice structures 
 
3.1. Brief overview of the research 
 
The demand for patient-specific implants is increasing 
nowadays and they are getting more and more emphasis in 
medical engineering developments. The number of 
standard-sized and bulk hip implant replacements is 
constantly increasing due to the fact that e.g. the implant 
was not able to properly integrate into the body. Cellular 
structures inspired by nature are beneficial for implant 
purposes in several ways. For example, it is less rigid than 
a bulk implant and can be optimized for the stiffness of the 
bone. The other is that the correctly chosen cellular 
structure (size and shape) facilitates bone ingrowth and 
osseointegration. Previously, the use of cellular or lattice 
structures for orthopedic purposes - aware of its 
advantages - was not possible due to the limitations and 
possibilities of manufacturing technology. Today, there are 
industrial solutions for the additive manufacturing (AM) of 
biocompatible metals (e.g. titanium). One of the greatest 
advantages of additive technology is that the design 
engineer is not limited in terms of geometrical design, so 
even extremely complex structures (e.g. lattice structure) 
can be realized with high precision. The research thus aims 
at the design and characterization of cellular titanium 
structures for hip implants according to medical guidelines 
and manufactured with additive technology. 
Hip implant surgeries and replacements have been 
increasing over the years, especially for people over 60 
years old, for whom it was expected to double over the 
2020-2050 range [20]. A review of hip implant revision 
surgeries over a 6-year time period was performed in [21]. 
In the study 51.9% of the cause of failure was aseptic 
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loosening and 16.9% of the cause of instability was 
reported. 
The mechanical properties of the implants should match 
those of the bone under loading during the activities of 
daily living. The elastic modulus of bone varies in range 
from 4 to 30 GPa according to the type of bone [22], hence, 
the material replacing the bone is expected to have a close 
value in that range. This requirement can be achieved 
using implants built from lattice structures. In the case of 
stiffer implant material, the implant will absorb the whole 
stress, causing bone resorption around the implant area 
which leads to the loosening of the implant [23], commonly 
known as the stress-shielding effect [24]. 
Lattice structures can be explained as three-dimensional 
structures composed in topological order and composed of 
one or more repeated unit cells [25,26]. The effective 
mechanical properties of such structures can be changed 
by adjusting parameters to show better properties than 
those of the original material. In the biomedical field, 
lattice structures are good solutions to diminish the 
stiffness of the metal prosthesis and get it as close as 
possible to the stiffness of the bone [27], thus avoiding the 
stress shielding effect [28]. Since the lattice structure 
achieves a high surface area-to-volume range, it facilitates 
better osseointegration too [29]. 
These types of lattice structures cannot be manufactured 
using the traditional way. AM overcomes these 
manufacturing technology limitations and since it can also 
handle biocompatible material (e.g. titanium alloys), the 
solution is in the hands of the design engineer. 
Many AM techniques have been researched to choose a 
good manufacturing technique that suits the properties of 
titanium alloys. Power bed fusion (PBF) techniques—such 
as selective laser melting (SLM) electron-beam melting 
(EBM), and direct metal laser sintering (DMLS)—are 
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preferable with titanium alloys due to their high-quality 
direct near-net-shape fabrication [30]. For AM technology 
the DMLS is used, which applies a Yb (ytterbium)-fiber 
laser that melts a powdered metal to build a complex 
structure layer by layer [31]. 
At the University of Debrecen, research has been going on 
regarding the development of hip implants, in which I have 
been involved for several years. A 3D printer working with 
DMLS technology was procured at the University of 
Debrecen, which was optimized for Ti6Al4V titanium alloy. 
Thanks to this, experimental production could begin. The 
group under my supervision deals with the 
characterization of different lattice structures, so finite 
element simulations can be performed based on 
experiments to determine the material response of the 
developed structures. 
 
3.2. Introduction of the investigated structures 
 
Ti6Al4V metallic powder (EOS GmbH, Electro Optical 
Systems, Munich, Germany) with an average particle size 
of 20–80 µm were utilized for manufacturing the 
specimens. The nominal chemical composition of the raw 
material is listed in Table 6. 
 

Table 6. Nominal chemical composition of Ti6Al4V [32] 
Element Data 

Ti (wt%) 88-90 
Al (wt%) 5.5-6.5 
V (wt%) 3.5-4.5 
other (wt%) 1 
 
For determining the Young's modulus of the raw material 3 
cylindrical specimens were manufactured by an EOS M290 
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(EOS GmbH, Electro Optical Systems, Munich, Germany) 3D 
printer with a diameter of 7.5 mm and a height of 15 mm. 
The machine uses a laser of type Yb fiber with 400 W 
power. The focus diameter is 100 μm and the scanning 
speed is 7 ms-1 [33]. EOSPRINT 2 software was used in the 
machine to process the CAD data. 
The specimen was then compressed using the INSTRON 
8801 servo-hydraulic testing machine. The compression 
speed was set at 1 mm/min. A video extensometer 
provided with a heavy-duty camera was used to detect the 
displacement along the compression process [34]. The 
Young's modulus of the raw material was determined and 
used in the later finite element simulations are listed in 
Table 7. The standard deviaton for the measured Young's 
modulus was 1.878. The Poisson's ratio of the material is 
0.34 [32]. 
 

Table 7. Young's modulus of the raw material [32,34] 

Property Data Measured data 

Young’s modulus (GPa) 113.8 106.24 
 
A difference of 7.1% was noticed for Young's modulus 
given by the producer [32] for the Ti6Al4V titanium alloy. 
This could be due to the following reasons: printing 
accuracy and quality, material quality or measurement 
error [34]. 
According to medical guidelines, implants designed with 
open cell or lattice structures greatly helps bone ingrowth 
and osseointegration. Considering that these structures are 
produced by additive manufacturing, the design engineer 
has freedom in terms of geometric design during the 
process. The choice was limited to 4 lattice structure types: 
3D lattice infill pattern (3DLIP); double-pyramid lattice 
with cross (DPLC); double-pyramid lattice and face 
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diagonals (DPLFD); Octahedral lattice (OL), see in Figure 
11.  
 

 
Figure 11. The lattice structures: (a) 3DLIP; (b) DPLC; (c) 

DPLFD; (d) OL [35] 
 
The geometrical parameters of the lattice structures can be 
adjusted, so the porosity of the designed structures was set 
to be the same as possible so that the results of the 
mechanical tests can be compared. These lattice structures 
are available in SpaceClaim within the ANSYS software 
2021 R2. The dimensions of the specimens that are the 
subject of the test are 20 mm   20 mm   30 mm. A bulk 
part was designed with a height of 5-5 mm at the top and 
bottom of the test specimen to ensure the possibility of the 
most accurate measurement. Since the parameters of the 
lattice structures can be customized, the structures were 
designed considering the ISO 13314 standard [19] and in 
such a way as to have approximately the same porosity for 
comparability. The models and the specimens can be seen 
in Figure 12 and those parameters are listed in Table 8.  
 

Table 8. The main parameters of the specimens [35] 
Lattice type Porosity (%) Volume (mm3) 

3DLIP 74 2079.17 
DPLC 74 2067.58 
DPLFD 71 2313.96 
OL 70 2431.76 
 
 



22 

 

 
 

   

    
(a) (b) (c) (d) 

Figure 12. The specimens manufactured via 3D printer: (a) 
3DLIP; (b) DPLC; (c) DPLFD; (d) OL [35] 

 
The specimens were manufactured by the EOS M290 (EOS 
GmbH, Electro Optical Systems, Munich, Germany) 3D 
printer. 
The dimensional accuracy of the specimens can have a 
great impact on the results of the laboratory measurement. 
Therefore an extensive investigation in terms of geometric 
and shape accuracy was carried out using a 3D scanner 
[36]. During the investigation, the designed CAD models 
with the test specimens manufactured with the 3D printer 
were compared. The manufacturing accuracy - in addition 
to other findings - was found to be suitable for the 
subsequent tests. 
 
3.3. Compression tests 
 
An INSTRON 8801 Servohydraulic Fatigue Testing Machine 
(INSTRON, Norwood, MA, USA) was used to conduct the 
compression tests. An INSTRON (INSTRON, Norwood, MA, 



23 

 

USA) AVE2 video extensometer with an accuracy of 0.5% 
was used with the compression test to obtain an accurate 
measurement of the displacement during the experiment. 
The test was done at room temperature [35]. The test 
setup can be seen in Figure 13. 
 

 
Figure 13. Test setup for the compression of lattice 

structures [35] 
 
The experiments were conducted according to 
displacement at a constant rate, set to 1 mm/min. A 
maximum force of 15 kN was applied to each specimen. No 
lubrication was used. Three samples of each lattice 
structure were tested under compression [35]. 
The results of the compression tests were evaluated for 
each set of specimens. From the stress-strain curves the 
effective Young's modulus (Eeff) of the different lattice 
structures were calculated, see in Table 9. 
The compression test was considered in the elastic zone 
and the results were shown up to 0.004 strain. The average 
stress-strain curves of different lattice structures are 
shown in Figure 14. 
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Table 9. Results of the compression test [35] 
Lattice type Eeff (MPa) 

3DLIP 

1 8702 
2 9298 
3 8030 

average 8676.7 
standard deviation 634.3 

DPLC 

1 7741.5 
2 7565.4 
3 7896.9 

average 7734.6 
standard deviation 165.8 

DPLFD 

1 8375 
2 8620 
3 8101.3 

average 8365.4 
standard deviation 259.5 

OL 

1 11688 
2 10742 
3 10239 

average 10889.7 
standard deviation 735.7 

 

 
Figure 14. Average stress-strain curves of the different 

lattice structures [35] 
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3.4. Finite element analysis of the cellular titanium 
structures 
 
The numerical simulation of the compression test using the 
same boundary conditions was performed using the ANSYS 
R2 Workbench. The experiences of previous works [37,38] 
were also taken into consideration during the 
establishment of the finite element model. Mesh sensitivity 
analysis was also done [35] to find the optimal element 
size. The finite element models of the different lattice 
structures can be seen in Figure 15. 
 

  
(a) (b) 

  
(c) (d) 

Figure 15. Finite element models of the lattice structures: 
(a) 3DLIP; (b) DPLC; (c) DPLFD; (d) OL [35] 
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Stress-strain curves were generated from the finite 
element simulation runs and the effective Young's modulus 
was determined and than compared with the results of the 
compression test, see Figure 16 and Table 10. 
 

 
Figure 16. Stress-strain curves of different lattice 

structures [35] 
 
Table 10. Effective Young's modulus determined from the 

compression test and the numerical simulation [35] 
Lattice 

type 
Eeff (MPa) Percentage 

difference (%) measurement simulation 
3DLIP 8676.7 9592.9 9.6 
DPLC 7734.6 8356.4 7.4 
DPLFD 8365.4 9260.1 9.7 
OL 10889.7 11719 7.1 
 
3.5. Conclusions 
 
The most commonly used hip implants typically have a 
bulk structure, which does not take into account the 
operating environment from a mechanical point of view. 
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Lattice structures provide a good basis for the design of 
structures with strength similar to bone, and nowadays the 
production of this complicated structure is also solved.  
Considering the medical guidelines, 4 types of lattice 
structures (3D lattice infill pattern; double-pyramid lattice 
with cross; double-pyramid lattice and face diagonals; 
octahedral lattice) from Ti6Al4V titanium alloy with the 
same porosity were designed, from which the specimens 
were manufactured using direct metal laser sintering 
technology. Compression tests were performed under 
laboratory conditions, from which the effective Young's 
modulus of these structures was determined. 
To be able to design the hip implant part designed from the 
lattice structure with numerical tests during the design, 
finite element simulations were performed, which showed 
a good agreement with the laboratory measurements, 
thereby validating our finite element models. 
With the help of the above listed investigations, it was 
possible to determine the material response of the 
specimens made of lattice structures, which is a good 
starting point for the design of patient-specific hip 
implants. 
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4. Shape optimization of axisymmetric rubber parts 
 
4.1. Brief overview of the research 
 
Designing the suspension systems of vehicles is a 
demanding engineering task. Currently, driving stability is 
ensured by electronically controlled active suspension 
systems. The objectives set in the course of designing 
include improving travel comfort, decreasing the dynamic 
loading of the wheels and decreasing the suspension 
workspace [39,40]. Similar possibilities are offered by the 
use of air springs. 
 

 
Figure 17. The air spring [40] 

 
The rubber bumpers (see Figure 17) built into the air 
springs of buses perform several crucial functions, such as 
working together with the air spring as a secondary spring, 
thus modifying the original characteristics of the air spring 
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when pressed together (characteristics of the dotted and 
dashed lines in Figure 18) [40]. 
 

 
Figure 18. The "lift" diagram [40] 

 
When the bus is in a stationary position and settles to the 
ground, the static weight of the chassis and the body rests 
on the bumper; in this case, the solid line characteristic is 
active. If the fibre-reinforced bellows of the air spring 
wears through while the bus is running, the vehicle can 
safely reach the nearest garage at a limited speed while 
bouncing on the bumper; no additional damage will occur. 
It prevents metal-on-metal collision at large dynamic 
impulses and absorbs the impulse. These rubber bumpers 
are subject to compressive stress, for which the 
characteristics show a progressive feature [40]. 
It is a fundamental requirement that they should have a 
specified load-displacement curve under load; setting this 
objective results in a shape optimization task. The 
optimization aims to achieve a specified characteristic 
through the geometric design of the rubber bumper while 
the material characteristics remain the same [40]. 
Several authors have formulated shape optimization for 
the specified stiffness of rubber parts, in which the analysis 
was done using commercial finite element software or a 
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finite element code of their development [41-44]. Rubber 
products can suffer from large deformation upon working 
conditions while behaving as a non-linearly elastic, 
isotropic and incompressible material. This kind of 
behaviour of rubbers can be described with a hyperelastic 
material model, which uses the strain energy to describe 
the relationship between stress and strain considering the 
related continuum mechanics background. Such 
hyperelastic material models are Mooney-Rivlin, Ogden, 
Yeoh, etc. [45]. 
In solving the shape optimization problem the usage of 
artificial intelligence (AI) tools was an important aspect. AI 
methods include, among others, the optimization 
algorithms inspired by nature (Genetic Algorithm, 
Differential Evolution, Simulated Annealing, etc.) or 
machine learning procedures (Neural Networks, Deep 
Learning, Support Vector Regression, etc.) [46]. 
The research intends to determine the behaviour of rubber 
bumpers in the complete range of operation, and thus the 
shape optimization aims to achieve the specified spring 
characteristics. Since there is no active control in the 
rubber bumpers, shape optimization may provide the 
required load-displacement curve. In connection with the 
objective set, achieving the aim of the optimization will 
require an efficient force-displacement calculation, which 
is performed using the finite element method [40]. This 
goal was served by a finite element program developed for 
the investigation of axisymmetric rubber parts and a 
commercial finite element software as well, which can be 
conveniently fit to the shape optimization procedure. 
However, a series of finite element runs of non-linear 
problems are time-consuming, therefore Support Vector 
Regression (SVR) as a surrogate model was used to replace 
the costly engineering simulations and to support the 
optimizations. In this thesis, two shape optimization 
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methods of axisymmetric rubber bumpers are introduced. 
The novel optimization procedures developed are suitable 
for the shape optimization of rubber bumpers with 
specified characteristics. The efficiency of the methods was 
verified by examples. 
 
4.2. Material model of the investigated rubbers 
 
Rubber bumpers may undergo large deformations under 
load, which in itself shows non-linear behaviour. The 
changing contact range between the parts and the 
incompressibility of the rubber increases this nonlinear 
behaviour further [40]. 
A successful finite element simulation of rubber parts 
hinges on the selection of an appropriate strain energy 
function and the accurate determination of material 
constants [47]. For rubbers, the material models are 
generally given by the strain energy density function [45]. 
The strain energy density function of nearly 
incompressible materials can be divided into a volume-
preserving and a volume-changing part 
 

              (1) 
 
where       is the volume preserving part of the strain 
energy density and      is the strain energy density part 
resulting from the volume change.    is the volume 
preserving member of the right Cauchy-Green strain 
tensor, while   is the Jacobian [40]. 
Several material models can be found in the literature for 
the volume-preserving part of strain energy density. 
Measurements of the rubber material are needed to 
determine the material constants used for finite element 
analysis. The main load of the rubber bumper is 
compression, therefore compression tests according to the 
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ISO 7743 standard [48] and the related curve-fitting 
processes were performed on rubber specimens and 
products [49, 50]. As a result of extensive research, it was 
found, that the two-term Mooney-Rivlin hyperelastic 
material model is suitable for the numerical calculations. 
The strain energy density function for the two-term 
Mooney-Rivlin model is 
 

                        
 

 
         (2) 

 
where    and    are the first and second scalar invariants of 
 , respectively. The     and     are the Mooney-Rivlin 
material constants, while   is the bulk modulus.  
 
4.3. Shape optimization of rubber bumper using SVR 
 
The meridian section of the investigated axisymmetric 
rubber bumper can be seen in Figure 19.  
 

 
Figure 19. Meridian section of the investigated bumper 

(the dimensions are in mm) [40] 
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The outer skirt of the bumper is described using a cubic 
spline in five control points. The rubber bumper is 
subjected to a prescribed 20mm displacement.  
 
4.3.1. Finite element model of the rubber bumper 
 
To establish the force-displacement curve under 
compression a special purpose finite element code was 
developed using the so called combined technique, which 
is based on the following functional 
 

                 

 

           

 

  

        

 

   
 

 
    

 

  

            

(3) 

 
where the displacement field   is approximated using the 
quadratic tensor product space, the volume change    and 
the hydrostatic pressure    are approximated using linear 
functions independently of each other.       is the penalty 
parameter member,   can be indirectly derived from the 
displacement and is independent of   ,   is the penalty 
parameter of the contact,    is the gap function,         is 
the potential of the external forces,   is the volume of the 
rubber and    is the contact surface [40]. To discretize the 
functional nine-node iso-parametric axisymmetric finite 
elements are used. Applying the Total-Lagrange 
description to the variation equations of (3) according to 
        [45], after finite element discretization, and the 
Newton-Raphson iteration [51] is finally obtained 
 

         (4) 
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where    is the structural tangent stiffness matrix,    is 
the vector of nodal point displacement increment and    is 
the unbalanced load vector. The validation and calibration 
of the program (mesh, material constants and finite 
element input data) were performed according to [52]. For 
the finite element code, a data generation program (mesh, 
boundary conditions, loads and finite element input data) 
has also been developed [40]. 
The finite element input data are given in Table 11, the 
original and the deformed shape of the bumper, 
furthermore the initial force-displacement curve calculated 
by the finite element code can be seen in Figure 20. 
 

Table 11. Finite element input data [40] 
Properties Data 

     Mooney-Rivlin constant (N/mm2) 0.5 
     Mooney-Rivlin constant (N/mm2) 0.125 
  bulk modulus (N/mm2) 1000 
   prescribed displacement (mm) 2 
Number of load steps 10 
 

  
Figure 20. The initial and deformed shape of the bumper 

and the force-displacement curve [40] 
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4.3.2. The optimization method 
 
In both optimization processes, we start from the force-
displacement curve of an existing construction. The 
optimization aims to minimize the difference between the 
initial force-displacement curve and the desired force-
displacement curve, see Figure 21. 
 

 
Figure 21. Working characteristics of a rubber bumper 

with optimum shape and initial shape [40] 
 
The objective function of the shape optimization problem 
can be formulated in several ways. In the first case, the 
objective function gives the area between the desired 
force-displacement curve and the curve obtained by finite 
element computation for a specific rubber bumper shape 
 

                             

  

 

 (5) 

 
where    is considered on     , the set of possible 
design parameter vectors is  ,    is the limit of the 
operation range,      and        denote the compressive 

force of the desired characteristics and the compressive 
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force calculated by the finite element method for a specific 
geometry (determined by  ), respectively [40]. The 
optimization range   is given by inequality geometric 
constraints from technology limitations, and   is the 
number of the design parameters. Function    has to be 
minimized by determining the optimum design parameter 
vector     , that is 

 
            

   
       (6) 

 
Since numerical methods are used, the process results in 
an approximate value of the optimum [40]. 
The first step of the process is to solve a non-linear 
regression problem for function   . The regression 
procedure is based on the learning points             

            , where   is the number of learning points 
and        are calculated with finite element simulations. 
The SVR model proposed by [53] is used to find the 
regression function. The application of SVR in non-linear 
models has the advantage that the transformation function 
between the input space and the feature space can be 
hidden [54], and machine learning procedures can be 
applied to find an appropriate regression function. The 
calculations are carried out with the SVR package of "R" 
software. Since the values of the regression function 
provided by the software are available for arbitrary design 
parameter vectors in  , the place of the minimum of   , 
i.e. the value of the optimum design parameter vector, can 
be determined numerically. The theoretical background of 
the method is summarized in [40]. 
Using the finite element method, the values of    are 
determined for the design parameters           and 
the learning points play the role of the given data points in 
the non-linear regression procedure. Based on the 
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research [53]  -intensive error function is applied, where 
the   may be regarded as the parameter controlling the 
smoothness of the solution. When using regression models, 
we have to take into consideration that certain learning 
points will disturb the run of the regression function [40]. 
These effects are moderated using slack variables [53] and 
a hyper-parameter C is introduced, which can be regarded 
as a penalty parameter that penalizes excessive 
divergence. In the SVR model, the so-called kernel 
functions play a central role. By choosing a suitable kernel 
function, an appropriate solution to the regression 
problem can be achieved [40]. In this optimization 
problem the Gaussian kernel function is chosen 
 

                 (7) 
 
where   is a hyper-parameter controlling the form of the 
kernel functions. The value of the regression function is 
fundamentally determined by the learning points. The 
regression function obtained from the SVR model is 
denoted by       [40]. The accuracy of the regression 
provided by the SVR model depends on   and  . An 
optimum choice of hyper-parameters leads to the error of 
the learning process 
 

    
                      

  
   

            
  

   

   
   (8) 

 
where           are the values of the objective function 
determined by the finite element calculations.   

  can be 
specified by the user according to the expected accuracy 
[40]. The learning points are used to test the error    of the 
regression function produced by the software optimizing 
the hyper-parameters   and  . If the error    is within the 
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specified limit   
  the regression function is accepted and is 

used for further calculation [40]. 
Considering a set  
 

               (9) 
 
according to technology limitations the minimum of       
on   is determined numerically, where   is the number of 
possible solutions. 
The finite element calculation is performed with the 
optimum design parameter vector determined using SVR 
and the condition 
 

   
                         

           
   

  (10) 

 
is checked, where the limit   

  is specified by the user. If 
(10) is fulfilled, the optimization is considered to be 
completed [40]. 
 
4.3.3. Numerical example 
 
The geometry of the rubber bumper was introduced in 
Figure 19. The outer skirt of the bumper is described using 
a cubic spline in five control points. These control points 
are the design parameters [40]. The initial and the desired 
characteristics can be seen in Figure 22. 
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Figure 22. The initial and desired force-displacement 

curves [40] 
 

In the investigation the design parameters in [mm] are 
defined according to the following conditions: 
 

                  , where 

 
 
 

 
 

          
              

              

              
              

  

 
and                are even numbers [40]. 
Under the specified accuracy, the number of possible 
solutions is       . The number of learning points is 
    . During the optimization process, the following 
values were set:          

         
      , while the 

optimum hyper-parameters were found           , 
where         . The goodness of learning is shown in 
Figure 23. 
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Figure 23. SVR best fit [40] 

 
Based on the calculation, the minimum work difference of 

the possible solutions is                    , for 

which the optimum design parameters are      

                 in mm. The deformed shape of the 
optimal geometry and the characteristics obtained for the 
control finite element calculation run for the optimum 
design parameters can be seen in Figure 24. The 
                 Nm, so the tolerance is   

        

[40]. 
 

  
Figure 24. The deformed shape of the optimal geometry 

and the optimal force-displacement curve [40] 
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4.4. Shape optimization of rubber bumper using local 
search algorithm powered by SVR 
 
As a second example another axisymmetric rubber was 
investigated, the meridian section of the part can be seen 
in Figure 25. 
 

 
Figure 25. Meridian section of the investigated bumper 

(the dimensions are in mm) [47] 
 
4.4.1. Finite element model of the rubber bumper 
 
The main load of the rubber bumper is compression, 
therefore a compression test and curve-fitting process 
were performed on rubber specimens according to [49,50]. 
For the finite element calculations the Femap Siemens 
commercial finite element software was used. The 
boundary conditions are axisymmetric, so linear 
isoparametric quadrilateral elements were applied and the 
size of the element was 1mm. Since the rubber bumper 
comes into contact on the bottom and top with flat steel 
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plates, frictional contact was defined between the surfaces. 
The coefficient of static friction was selected according to 
[55]. The rubber bumper is subjected to a prescribed 
12mm displacement. 
The finite element input data are given in Table 12., the 
deformed shape of the bumper, furthermore the initial 
force-displacement curve calculated by the finite element 
software can be seen in Figure 26. 
 

Table 12. Finite element input data [47] 
Properties Data 

     Mooney-Rivlin constant [N/mm2] 1.28801 
     Mooney-Rivlin constant [N/mm2] 1.1371 
  bulk modulus [N/mm2] 1000 
  friction coefficient 0.6 
 

 
Figure 26. The deformed shape of the bumper and the 

force-displacement curve [47] 
 
4.4.2. The shape optimization method 
 
In the second problem, the objective function is an error 
value and was calculated as the sum of the square error 
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  (11) 

 
where         is the error value in an investigated design 
point,          is the  th results of the required 

compressive force value in the optimal design point and 
      is the  th results of the required compressive force 
value in the initial design point [47]. The finite element 
analysis was solved in 100 steps with every 10th step 
created as output.      is considered on      and has to 
be minimized by determining the optimum design 
parameter vector     , that is 

 

           
   

      (12) 

 
The efficient calculation of the objective function naturally 
requires sufficiently accurate finite element calculations, 
therefore the appropriate finite element model plays a 
central role. In this research, the local stochastic search 
method is used to find the global optimum using finite 
element calculations. Due to the nature of the local 
stochastic search procedure, it requires many finite 
element calculations, which are extremely time-
consuming. It can be explained by that an appropriately 
high number of iterations are needed to find the acceptable 
environment of the global optimum. To accelerate the 
finite element model, pre- and postprocessing were 
automated with the use of Visual Basic for Applications 
(VBA), which allowed to directly access the Femap from 
Excel. The finite element model was controlled with a 
macro running in Excel and         values were 
determined for each sample [47]. Thanks to this 
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automation the local stochastic search algorithm was 
implemented and run for the shape optimization task. The 
success of the optimization depends on the correct choice 
of the parameters of the local search algorithm. The 
calculation of the finite element model is in itself time-
consuming, which makes it impossible to investigate the 
local search algorithm parameters [47]. 
The novelty of the research was that a trained SVR 
surrogate model was integrated into the size selecting 
process of the search space of the algorithm. Using the 
stochastic search algorithm and the adjusted parameter, 
the finite element model was directly run to solve the 
shape optimization of the rubber bumper [47]. 
The pseudocode of the local search algorithm is the 
following [47]: 
(1) Select a starting point      randomly; 
(2)         - generate a random direction      , 

if         then generate a new    direction 
and repeat it. If         then         
  ; 

(3) If                    , then          , 
otherwise        , further      ; 

(4) Stopping criterion - if the maximum iteration 
number is reached. 

To generate    direction, a normally distributed random 
number with zero mean is selected in all directions of the 
design variables. This algorithm contains two parameters 
to be determined, which are the   standard deviation 
belonging to a random number and      maximum 
iteration number should be provided as a precondition of 
the stopping criterion, meaning the cost of the algorithm. 
These parameters are involved in the parameter selection 
process. The program written was operated for running 
the shape optimization task in an automatized closed 
system by providing the parameters. As a result, it 
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determined the optimal objective function value as well as 
its other relevant values [47]. 
 
4.4.3. Numerical example 
 
In this case of the research, the applicability of the local 
stochastic search algorithm in the optimization process 
was investigated, therefore the desired characteristics was 
determined from a predefined optimum shape. 
Taking technological considerations into account the 
height   of the product and the draft angle   were fixed, 
see Figure 25. The outer diameter    and the hole diameter 
   were chosen as design parameters. In the shape 
optimization, the design parameters are defined in [mm], 
according to the following conditions [47]: 
 

         , where  
           

          
  and    

  

 
     

 

where    
  

 
       is the coordinate of point P, see 

Figure 25. 
To test the goodness and efficiency of the proposed 
method a predefined optimum shape was chosen, where 
              in mm and          . For the initial 

shape           in mm and               kN2. 
To map the values of the objective function a series of 
finite element calculations were performed with the 
increment of 5 mm along with the design parameters 
selected from  . It means altogether 128 vertex pairs. 
Thanks to the above mentioned automation these 
calculations could be implemented in a closed system. The 
objective function values on the optimization range by 
applying the finite element model can be seen in Figure 27. 
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Figure 27. Objective function values on the optimization 

range by applying the finite element model [47] 
 
The smallest objective function value was at            
in mm, where              kN2. It can be seen, that the 
error value is small compared to the initial shape, 
however, the determined point is far away from the known 
optimum [47]. 
To investigate the local search algorithm,     mm and 
          values were selected. The search method 
was run for the two-variable shape optimization task for 
the rubber bumper. Table 13 contains better function 
values accepted in   iteration by the algorithm and its 
related geometric variable values and Figure 28 visualizes 
the change in the location of the better function accepted 
by the optimization method. Considering the results, the 
efficiency of the algorithm was low, as it was not suitable 
for identifying better value than              kN2 even 
after passing        iterations. The process could not 
approach the global optimum even after        
calculation, although it managed to approach it [47]. 
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Table 13. Better function values accepted by the local 
search algorithm [47] 

                          (kN2) 
0 89.851 31.215 4828.676 
2 109.522 25.262 748.357 
4 113.054 44.676 25.124 

17 113.506 43.719 1.057 
427 111.375 39.416 0.654 
514 107.389 31.960 0.267 

1250 109.184 35.372 0.051 
 

 
Figure 28. Investigated design parameters by the local 

search algorithm [47] 
 
The parameters of the local search algorithm have a great 
influence on the results. As a next step, the parameter 
selection of the algorithm is done using a trained SVR 
model. The objective of using SVR is to discover the 
function         that best predicts the value of         
associated with each value of  . 22 learning points were 
selected from   according to [56] and see in Figure 29, 
then         values were determined by the use of finite 
element analysis. These samples are used as learning 
points to train the SVR surrogate model with a cubic kernel 
function. Regression Learner application built into Matlab 
was used for this purpose and the regression model 
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training was performed manually [47]. The number of the 
required learning points was determined in a former 
research [56].  
 

 
Figure 29. The selection of learning points from the 

optimization range [47] 
 

For the fitting process,         and kernel scale=1 values 
were selected, while the rest of the hyperparameters were 
set automatically by the Regression Learner application. 
The predicted response         of the SVR model is 
plotted against the true response        , see Figure 30 
[47]. 
 

 
Figure 30. SVR best fit [47] 
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Using the trained SVR model, predictions were made for 
each combination of integer values of design parameters. 
The predicted objective function values are illustrated 
above the optimization range according to Figure 31. As a 
result, it seemed suitable for approaching the values of the 
nonlinear objective function [47]. 
 

 
Figure 31. Predicted points for the objective function 

values by the SVR model in the optimization range [47] 
 
The trained surrogate model was used to find the 
appropriate parameters (  and  ) of the local search 
algorithm. The process step by step can be found in [47] 
and will not be detailed due to lack of space. Based on the 
research it can be pointed out that no optimal value can be 
defined for the size of the search space. In the beginning, a 
large space is needed for mapping the optimization range 
and avoiding getting stuck in the local optimum. On the 
other hand, a smaller space is needed in the environment 
of the global optimum for the algorithm to have a better 
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chance of finding an optimal solution. Decreasing search 
space may happen through various functions such as an 
exponential function or after a manually selected iteration 
number [47]. The main objective was to decrease   value if 
the iteration number exceeded the prescribed value. As a 
result of extensive investigation adjustment of the 
parameters by tightening the search space was found to be 
the most accurate for the optimization. Table 14 shows the 
parameters of the local search algorithm. 
 

Table 14. Adjustment of local stochastic search algorithm 
by tightening search space [47] 

       iteration number start 1 2001 
      iteration number stop 2000 3000 

  (mm) standard deviation 30 0.5 
 
Table 15 includes better function values and their 
geometry variable values accepted by the algorithm, while 
Figure 32 visualizes the path done by the algorithm [47].  
 

 
Figure 32. Investigated design parameters by the adjusted 

local search algorithm [47] 
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Table 15. Better function values accepted by the adjusted 
local search algorithm [47] 

                          (kN2) 
0 73.237 36.540 14624.63333 
1 76.240 20.204 9106.38117 
2 90.939 42.385 7081.81690 
3 119.767 46.106 603.32863 
4 105.709 37.932 482.39861 
6 114.168 38.937 249.21546 

18 108.312 32.409 8.77936 
89 119.990 54.945 3.30837 

204 115.371 46.689 2.16783 
338 109.392 35.507 0.54223 
410 106.942 30.752 0.06769 

1056 108.970 34.950 0.03469 
2073 108.861 34.704 0.03287 
2158 108.738 34.448 0.02950 
2178 108.562 34.174 0.01972 
2202 108.511 34.070 0.01649 
2219 108.338 33.685 0.00402 
2307 107.900 32.816 0.00258 
2373 107.966 32.937 0.00025 

 
The objective function values were equal until three 
decimals were reached, even when the variables were 
within one decimal to the known optimum value. The 
effect of tightening search space coincided with what was 
experienced with the surrogate model. The optimum found 
by the algorithm occurred in the        iteration, 
which involves the fact that the random number generated 
with the      mm standard deviation meant a search 
space that was too large while on the way to a global 
optimum [47]. 



52 

 

The results of the local search algorithm and the adjusted 
local search algorithm trained on the SVR surrogate model 
are listed in Table 16. Considering the results the adjusted 
local search algorithm was several orders of magnitude 
more precise in the determination of the objective function 
even with a lower iteration number [47]. 
 

Table 16. Results of the optimization using local search 
algorithm [47] 

   
   

     
   

     

          
 

(kN2) 
Local search 5000 109.184 35.372 0.051 
Adjusted 
local search 

3000 107.966 32.937 0.00025 

Optimum 
shape 

 108 33 0 

 
Owing to the opportunity of axisymmetric simplification, 
the running time of the finite element model only took 25 
seconds on an Intel Core i5-8250U CPU. This 
computational need with 3000 iterations is below 21 hours 
[47]. 
 
4.5. Conclusions 
 
The characteristics of the rubber bumpers of different 
shapes were determined with the help of the finite element 
method.  
In the first optimization process, the SVR was used by 
means of open-source software to perform the 
optimization task.  
The SVR method requires relatively few time-consuming 
learning points to treat non-linear multidimensional 
optimization problems. The teaching procedure producing 
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a small number of learning points and carried out by using 
the finite element method can be regarded as short. After 
the teaching procedure, the software provides a 
remarkably strong prediction for further multitude of 
parameters by dispensing with the time-consuming finite 
element calculations and relying on engineering intuition. 
For five design parameters, the shape optimization 
procedure proved to be fast and accurate. This regression 
process results in an approximation value of the objective 
function. The goodness of the calculation can be checked 
by finite element computation [47].  
In the second optimization process, a two-dimensional 
shape optimization problem using a local stochastic search 
algorithm was introduced. As a metamodeling technique, 
SVR was selected for the training procedure. The SVR 
model required a lot less calculation than the finite 
element method, therefore this model was used to fine-
tune the parameters of the local search algorithm. The 
algorithm with the adjusted parameters can be used 
directly in the shape optimization of rubber bumpers. 
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5. Summary of new scientific results 
 
The following 4 items summarize the new research results: 
 
Thesis 1 
For closed-cell aluminium foams a novel geometrical 
reconstruction process based on µCT images was 
developed and the related finite element analysis of the 
structure in the elastic region was elaborated. It was 
proved that this geometrical reconstruction process 
including the finite element calculations is suitable for the 
detailed description of the real structures under 
compressive load. 
This thesis is based on the following publication [T1]. 
 
 
Thesis 2 
Closed-cell aluminium foam structure was approximated 
by a series of Weaire-Phelan unit cells and the developed 
CAD model was validated. Furthermore finite element 
model was established to determine the material response 
in a numerical way for compressive load which was 
validated by laboratory measurements. The developed 
process can be implemented in the design of closed-cell 
aluminium foam structures. 
This thesis is based on the following publication [T2]. 
 
 
Thesis 3 
Considering medical guidelines lattice structures from 
Ti6Al4V titanium alloy with the same porosity were 
designed and manufactured via direct metal laser sintering 
technology. Finite element models were then developed 
and validated by compression tests. It was proved that the 
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procedure can be implemented in the design process of 
patient-specific lattice structured hip implants. 
This thesis is based on the following publications [T3, T4, 
T5]. 
 
 
Thesis 4 
Support vector regression based optimization procedures 
were developed for the shape optimization of 
axisymmetric rubber bumpers. The introduced 
optimization processes with high accuracy can be 
implemented in the design practice relatively simply. The 
applicability of the novel methods was demonstrated on 
two- and five-dimensional shape optimization problems. 
This thesis is based on the following publications [T6, T7]. 
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